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Abstract
We present a framework, compliant with the general canonical principle
of statistical mechanics, to define measures on the set of pure Gaussian
states of continuous variable systems. Within such a framework, we define
two specific measures, referred to as ‘micro-canonical’ and ‘canonical’, and
apply them to study systematically the statistical properties of the bipartite
entanglement of n-mode pure Gaussian states at, respectively, given maximal
energy and given temperature. We prove the ‘concentration of measure’ around
a finite average, occurring for the entanglement in the thermodynamical limit
in both the canonical and the micro-canonical approach. For finite n, we
determine analytically the average and standard deviation of the entanglement
(as quantified by the reduced purity) between one mode and all the other
modes. Furthermore, we numerically investigate more general situations,
clearly showing that the onset of the concentration of measure already occurs
at relatively small n.

PACS numbers: 03.67.Mn, 05.70.−a

(Some figures in this article are in colour only in the electronic version)

1. Typical entanglement in quantum information theory

Due to the exponentially increasing complexity of the Hilbert spaces of multiple constituents, a
complete theoretical characterization of the entanglement of general quantum systems of many
particles turns out to be a daunting task [1]. A viable approach towards such a characterization
consists in focusing on the ‘typical’, statistical properties of the quantum correlations of
multipartite systems, when the states of the system are assumed to be distributed according
to a particular ‘measure’. This strategy is firstly aimed at simplifying the problem at hand
by restricting attention on the typical (and thus, in a sense to be precisely specified in the
following, ‘overwhelmingly likely’) features of the entanglement of a system whose state,
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resulting from a random process, is apt to be described by the chosen measures. Furthermore,
this kind of analysis is able to shed light on the general properties of the entanglement of
physical systems.

For finite-dimensional quantum systems, a natural, ‘uniform’ measure on pure states
emerges from the ‘Haar’ measure of the unitary group (i.e., from the left- and right-invariant
measure under application of any unitary transformation), whose elements allow one to retrieve
any state when applied to another given starting pure state. On such grounds, a well-defined
typical entanglement of finite-dimensional systems can be addressed and analysed. Original
studies in this direction were undertaken well before the development of the formal theory of
entanglement developed in quantum information science [1]: in 1978, Lubkin considered the
expected entropy of a subsystem when picking pure quantum states at random from the uniform
measure [2]. Let us recall that the von Neumann entropy S = −trρ ln ρ of a subsystem in
state ρ properly quantifies, for globally pure states, the entanglement between the subsystem
and the remainder of the system. Lubkin showed that one expects this quantity to be nearly
maximal. Pagels and Lloyd arrived later at the same qualitative conclusions, following an
independent line of thought [3]. Their work was expanded by Page, who conjectured an exact
formula for the average entropy of a subsystem Sm,n [4], reading

Sm,n =
mn∑

k=n+1

1

k
− m − 1

2n
, (1)

for a quantum system of Hilbert space dimension mn in a random pure state, and a subsystem
of dimension m � n. This relation was later proven by Foong and Kanno [5].

This general line of enquiry was revisited and considerably extended in the setting of
quantum information theory by Hayden, Leung and Winter in [6], where they extensively
studied the ‘concentration of measure’ around the average of the entanglement probability
distribution with increasing n. They also pointed out that this study may provide a way of
simplifying the theory of entanglement which contains a plethora of locally inequivalent
classes. In other words, as already mentioned, restricting statements to the ‘typical
entanglement’ allows one to ignore several unessential complications. Recent results on
the physical interpretation of Page’s conjecture can be found in [7, 8], where it is proven that
a circuit of elementary quantum gates on a quantum circuit is expected to maximally entangle
the state to a fixed arbitrary accuracy, within a number of gates that grows only polynomially
in the number of qubits of the register.

A further simplification in the analysis of the entanglement can be achieved by considering
the typical entanglement of ‘particularly relevant’ (according to the specific problem at hand)
subsets of states. For example, it has been found that ‘stabilizer states’ (a countable set of
states playing a central role in quantum error correcting codes) are also typically maximally
entangled [9, 10], similarly to the set of all states. Such investigations are interesting
per se, as they unveil the potential and limitations hidden in the adoption of restricted classes
of states and, furthermore, provide us with a more detailed understanding of the entanglement
properties of the total state space.

Here we expand these considerations into the realm of continuous variables, i.e. of
quantum systems described by pairs of canonically conjugated observables with continuous
spectra. Such systems, ranging from motional degrees of freedom of particles in first
quantization to bosonic fields in second quantization, are ubiquitous to all areas of quantum
physics, being prominent in quantum optics (as they embody the light field in second
quantization), atomic physics (notably, in the description of atomic ensembles), quantum field
theory (as they encompass any bosonic field), in addition to their crucial role in molecular and
atomic physics.
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Quantum systems described by operators with continuous spectra live in infinite-
dimensional Hilbert spaces. Therefore, a first naive try in this direction could be to take
the infinite-dimensional limit of equation (1). Page showed that equation (1) implies that
Sm,n � ln m − m

2n
for 1 � m � n. Under that restriction, and noting that the maximal

entanglement is ln m, we can then make the observation that the ratio of the entanglement
average to the maximum tends to unity as n −→ ∞, but that the two quantities both diverge
logarithmically. From this perspective, the entanglement could be said to be typically infinite
in the continuous variable setting. Even though mathematically reasonable (in the limit’s
sense), this statement is definitely questionable, physically and practically. In fact, in any
practical situation, one will deal with a finite total energy or with finite ‘temperatures’ (both
quantities will be defined precisely in our treatment), whereas infinitely entangled states require
an infinite energy to be created.

In this paper, we shall restrict our attention on pure Gaussian states whose typical
entanglement we shall study under two different measures (‘canonical’ and ‘micro-canonical’),
both inspired by arguments of thermodynamical natures, but apt to describe different situations.
The previously mentioned divergences still potentially emerge in the Gaussian setting,
essentially because the symplectic group (which corresponds to second-order operations and
‘generates’ any pure Gaussian state from the vacuum) is non-compact, and thus allow one to
reach infinitely entangled states with infinite energy. The non-compactness of the symplectic
group is also the reason which prevents one from straightforwardly defining normalizable
measures on the set of Gaussian states. After having highlighted in detail such difficulties,
we will present here a general framework to circumvent them and define proper, physical
measures on the set of pure Gaussian states. The first ingredient we will make use of will be
the ‘Euler decomposition’ of a symplectic operation S, reading

S = O ′ZO,

where O and O ′ are orthogonal transformations (which do not affect the energy of the system),
while Z is a non-energy preserving product of local squeezings. Such a decomposition will
allow us to distinguish between ‘well-behaved’ compact parameters, contained in O and
O ′, and the ‘problematic’ squeezing parameters of Z, which are responsible of the non-
compact nature of the group and from which all the divergences originate. Eventually, such
divergences will be tamed by introducing proper prescriptions which will affect the energy of
the system, by imposing either a sharp upper bound (for the micro-canonical measure) or an
exponentially decaying (for the canonical measure) distribution of energies (in this respect,
see also [11] for a detailed discussion of the impact of similar constraints on entanglement
measures). These prescriptions will be motivated on thermodynamical grounds, by requesting
our distributions on the set of states to comply with the ‘general canonical principle’ [14],
stating that reductions of large systems should always be in thermal states (see page 8 for a
precise formulation). The compliance with the principle renders the measures we will define
particularly apt to describe situations at thermodynamical equilibrium, when the principle
always holds. Actually, the general canonical principle imposes restrictions on the possible
measures only in the asymptotic limit of infinite number of constituents: for finite number
of degrees of freedom there could be other possible measures, within our general framework,
than the micro-canonical and canonical instances here considered. However, also for a finite
number of constituents, these two measures permit us to answer the questions we are ultimately
interested in: what is the typical entanglement of Gaussian states for, respectively, given energy
and temperature? We will show that such measures imply the occurrence of a finite typical
entanglement in the limit of an infinite number of total constituents. Moreover, even for a
finite number of total degrees of freedom and finite upper bound to the energy—entailing the
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existence of a finite maximal entanglement—the typical entanglement concentrates around a
value which is well distant from the allowed maximum.

Note that Gaussian states are certainly the most prominent class of states not only in
quantum information with continuous variables, but also, more broadly, in quantum optics,
as they can be generated and manipulated with relative ease (even as highly entangled states
[15–17]), can be used for the implementation of quantum communication and information
protocols [18] and serve as a powerful testing ground for the theoretical characterization of
entanglement properties [19].

The micro-canonical measure, which we will apply here to the study of the typical
entanglement, has been already employed in the analysis of the quantum teleportation
of Gaussian states with generic second moments [20]. In particular, the micro-canonical
average quantum fidelity and a corresponding ‘classical threshold’ have been evaluated for
the teleportation of states with null first moments and arbitrary second moments under the
standard continuous variable teleportation protocol (see, e.g., [18] for a description of the
scheme).

Let us finally mention that a definition of micro-canonical average entanglement has been
very recently addressed for finite-dimensional systems as well [21], with a major emphasis on
the possibility of reducing time-averages to ensemble-averages.

This paper is organized as follows. In section 2, we review some preliminary facts
about Gaussian states and set the notation. In section 3, we review the definition of the
micro-canonical measure on pure Gaussian states, already introduced in [20], completing
our previous analysis with the inclusion of comments and mathematical details previously
omitted, and we extend the existing framework to encompass a ‘canonical’ measure as well.
Section 4 contains a rigorous proof of the ‘concentration of measure’, common to the two
measures introduced here, i.e. of the fact that the entanglement probability distribution
concentrates in the thermodynamical limit, around a finite ‘thermal’ average, away from
the allowed maximum. Even though this result had been anticipated in [20], this proof is
original and adds further insight into the matter. Section 5 presents a detailed study about
the typical entanglement of pure Gaussian states with a finite number of degrees of freedom,
where both analytical findings and numerical evidences are reported. Conclusions and outlook
are found in section 6. Three appendices complement the work, one of which (appendix B)
contains the most technical steps needed to prove the concentration of measure, while in
appendix A a specific Baker–Campbell–Hausdorff relation is derived, and in appendix C a
derivation of the expression of the maximal entanglement for given energy is presented.

2. Preliminaries

We consider bosonic continuous variable (CV) quantum-mechanical systems described
by n pairs of canonically conjugated operators {x̂j , p̂j } with continuous spectra, like
motional degrees of freedom of particles in first quantization or bosonic field operators
in second quantization. Grouping the canonical operators together in the vector R̂ =
(x̂1, . . . , x̂n, p̂1, . . . , p̂n)

T allows us to express the canonical commutation relations (CCR)
as [R̂j , R̂k] = 2i�jk , where the ‘symplectic form’ � is defined as

� =
(

0n 11n

−11n 0n

)
,

0n and 11n standing for the null and identity matrix in dimension n.
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Any state of an n-mode CV system is described by a positive, trace-class operator �. For
any state �, let us define the 2n-dimensional vector of the expectation values (‘first moments’)
of the canonical operators R (with entries Rj ) as

Rj ≡ tr [R̂j�]

and the 2n× 2n matrix of second moments, or ‘covariance matrix’ (CM), σ (with entries σi,j )
as

σi,j ≡ tr [{R̂i, R̂j }�]/2 − tr [R̂i�] tr [R̂j�].

Also, throughout the paper, we will refer to the ‘energy’ of a state � as to the expectation
value of the operator Ĥ0 = ∑n

j=1

(
x̂2

j + p̂2
j

)
. This definition corresponds to the energy of a

free electromagnetic field in the optical scenario (and to decoupled oscillators in the general
case). In our convention, as determined by the factor 2 appearing in the CCR, the vacuum of a
single mode has covariance matrix equal to the identity (thus simplifying significantly several
expressions), with energy 2 (the adopted energy unit is h̄ω/4 for a mode of frequency ω). The
energy is determined by first and second moments according to

tr (�Ĥ0) = tr(σ) + ‖R‖2, (2)

where ‖R‖ is the usual Euclidean norm of the vector R.
Gaussian states are the states with Gaussian characteristic functions and quasi-probability

distributions, defined over a phase space analogous to that of classical Hamiltonian dynamics.
As well known, a pure state |ψ〉G is Gaussian if and only if it can be obtained by transforming
the vacuum |0〉 under an operation generated by a polynomial of the second order in the
canonical operators. In formulae (up to a negligible global phase factor):

|ψ〉G = ĜA,b|0〉 ≡ ei(R̂TAR̂+R̂Tb)|0〉, (3)

where A and b are, respectively, a real 2n × 2n matrix and a real 2n-dimensional vector.
Because of the CCR and of the unitarity of ĜA,b ≡ ei(R̂TAR̂+R̂Tb), A can be chosen symmetric,
without loss of generality, while b is a generic real vector. b and A embody the first and second
moments of the Gaussian state, thus completely determining it.

The unitary operator can always be rewritten as (see appendix A)

ĜA,b = ei(R̂TAR̂) ei(R̂TMb), (4)

for some matrix M (as shown in appendix A, M = �A−1(112n − e4A�)/4 for invertible A’s).
First- and second-order operations can thus be generally ‘decoupled’.

First-order operations correspond to local displacements in phase space. While such
operations do not affect local entropies (and thus the entanglement) of multipartite states, they
do affect the energy of the states, which will play a central role in what follows. Moreover,
let us note that the group of these transformations is non-compact, being isomorphic to the
Abelian R

2n under the addition composition rule. In the following, we will show how the
first moments can be consistently incorporated in the presented framework. However, because
their inclusion in the study of the statistical properties of the entanglement is just a technicality
(adding no significant insight), we will set them to zero in the investigations to come.

As for second-order transformations, determined by the matrix A, they can be conveniently
mapped into the group Sp2n,R of real symplectic transformations, acting linearly on phase
space (as second-order transformations acting on the Hilbert space make up the multi-
valued metaplectic representation of the symplectic group [22]). Recall that a matrix S
belongs to the symplectic group Sp2n,R if and only if it preserves the antisymmetric form
�: S ∈ SL(2n, R) : S ∈ Sp2n,R ⇔ ST�S = �. Let us also recall that a symplectic
transformation S acts by congruence on a covariance matrix σ: σ �→ STσS. Of course,
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symplectic transformations can in general affect both the entanglement and the energy of a
state. The algebra of generators of the symplectic group comprises all the matrices that can be
written as �J , where J is some 2n×2n symmetric matrix [23] (in this notation, generators are
not complexified, so that S = e�J ). Such generators do not have a definite symmetry (i.e., they
are not necessarily symmetric or antisymmetric). Choosing a basis of the algebra such that each
generator of the basis is either symmetric or antisymmetric, allows one to distinguish between
a compact subgroup K(n) = Sp2n,R ∩ SO(2n) (spawned by antisymmetric generators) and
a non-compact subgroup (arising from skew-symmetric generators). Note also that, since
compact transformations are indeed orthogonal, they do not affect the energy of the states they
act upon (explicitly, tr σ and ‖R‖2 are both invariant under phase-space ‘rotations’).

Remarkably, the subgroup K(n) is isomorphic to U(n). Because this fact will be exploited
throughout the whole work, we shall sketch its proof here. Let us define the transformation O
by

O =
(

X Y

W Z

)
,

where X, Y,W and Z are n × n real matrices. It is straightforward to show that this
transformation is symplectic and orthogonal if and only if Z = X,W = −Y,XTX +Y TY = 11
and XTY − Y TX = 0, so that

O =
(

X Y

−Y X

)
. (5)

Now, let U = X + iY be a matrix with real part X and imaginary part Y. The unitarity condition
on U corresponds exactly to the previous two conditions on X and Y, thus demonstrating the
existence of a bijective mapping from U(n) to K(n). The preservation of the composition
rule can be straightforwardly checked out. Incidentally, this isomorphism implies that K(n)

has n2-independent parameters.
Let us rephrase equation (3) to give a transparent parametrization of pure Gaussian states

in phase-space terms, by considering the action of first- and second-order operations on the
covariance matrix and on the first moments:

σ = STS, with S ∈ Sp2n,R, R ∈ R
2n (6)

(recall that, in our units, the covariance matrix of the vacuum is the identity). Indeed, because of
the peculiar nature of their characteristic functions, Gaussian states are completely determined
by first and second moments of the canonical operators.

More generally, let us also recall that the covariance matrix Σ of any, pure or mixed,
Gaussian state can be written as

Σ = STνS, (7)

where S ∈ Sp2n,R and ν = diag(ν1, . . . , νn, ν1, . . . , νn) is a diagonal matrix with double-
valued eigenvalues called the ‘Williamson normal form’ of Σ [24, 25] (corresponding to the
normal-modes decomposition of positive definite quadratic Hamiltonians). The real quantities
{νj } are referred to as the ‘symplectic eigenvalues’ of Σ and can be computed as the eigenvalues
of the matrix |i�Σ|. The symplectic eigenvalues hold all the information about the entropic
quantities of the Gaussian state in question. In particular, the ‘purity’ µ ≡ tr �2 of the Gaussian
state � with CM Σ is determined as

µ = 1

/ n∏
j=1

νj = 1/
√

det Σ, (8)
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while the von Neumann entropy S ≡ − tr(� ln �) reads

S =
n∑

j=1

h(νj ), (9)

with the ‘entropic function’ h(x) given by

h(x) = x + 1

2
log2

(
x + 1

2

)
− x − 1

2
log2

(
x − 1

2

)
. (10)

Being the eigenvalues of |i�Σ|, the symplectic eigenvalues are continuously determined by
‘symplectic invariants’ (i.e. by quantities depending on the entries of the CM invariant under
symplectic transformations), defined as the coefficients of the characteristic polynomial of
such a matrix [27, 28]). This observation will be useful later on.

3. Measures on the set of pure Gaussian states

The present section is devoted to the definition of consistent measures on the set of
pure Gaussian states, introducing a broad framework motivated by fundamental statistical
arguments. We will review the construction of the ‘micro-canonical measure’, already
introduced in [20], complementing such earlier studies with discussions and mathematical
details. Furthermore, within the same general framework, we will present a novel, ‘canonical’
measure, thus extending our previous treatment.

A ‘natural’ measure to pick would be one invariant under the action of the operations which
generate the set of states we are focusing on. In the previous section, we have analysed such
a set of operations for pure Gaussian states, showing that it amounts to symplectic operations
and displacements. One would thus be tempted to adopt the left- and right-invariant measure
(i.e., the Haar measure) over such groups. Unfortunately, because the symplectic group is
non-compact, the existence of a Haar measure on the whole group [from which a measure for
pure Gaussian states could be derived via equation (6)] is not guaranteed. Notably, even if such
a measure could be constructed, it would not be normalizable, giving rise to distributions with
unbounded statistical moments. Moreover, some prescription has obviously to be introduced
also to handle the first moments which are, in general, free to vary in the non-compact R

2n

(note that the Euclidean volume is obviously invariant under left and right translations but is
not a proper measure in the space of first moments because it is not normalizable, due to the
non-compactness of R

2n).
To cope with such difficulties we will introduce, in analogy with statistical mechanical

treatments, assumptions on the energy of the states under examination, as defined in
equation (2), which will constitute our ‘privileged’ physical observable (in a sense to be
elucidated in the following). A proper structure to introduce a measure is inspired by a
well-known decomposition of an arbitrary symplectic transformation S:

S = O ′ZO, (11)

where O,O ′ ∈ K(n) = Sp(2n, R) ∩ SO(2n) are orthogonal symplectic transformations,
while

Z = Z′ ⊕ Z′−1, (12)

where Z′ is a diagonal matrix with eigenvalues zj � 1 ∀ j . The set of such Z’s forms a
non-compact subgroup of Sp2n,R (corresponding to local squeezings), which will be denoted
by Z(n). The virtue of such a decomposition, known as ‘Euler’ (or ‘Bloch–Messiah’ [26])
decomposition, is immediately apparent, as it allows one to distinguish between the degrees of
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freedom of the compact subgroup (essentially ‘angles’, ranging from 0 to 2π , which moreover
do not affect the energy) and the degrees of freedom zj ’s with non-compact domain. In
particular, applying Euler decomposition to equation (6) leads to

σ = OTZ2O. (13)

Due to the rotational invariance of the vacuum in phase space, the number of free parameters
of a pure Gaussian state of an n-mode system is thus n2 + 3n (taking the 2n-independent first
moments into account).

Quite naturally, we shall assume the n2 parameters of the transformation O to be distributed
according to the Haar measure of the compact group K(n), carried over from U(n) through
the isomorphism described by equation (5). The set of such parameters will be compactly
referred to as ϑ , while the corresponding Haar measure will be denoted by dµH (ϑ).

We have thus identified the variables which parametrize an arbitrary pure Gaussian state
and imposed a distribution on a subset of them. A ‘natural’ measure has yet to emerge for the
non-compact variables {zj } and {Rj }. As a first physical assumption, we will restrict to states
for which the expectation value of the free field Hamiltonian Ĥ0 = ∑n

j=1

(
x̂2

j + p̂2
j

)
is bounded

from above, such that tr (σ) + ‖R‖2 = ∑n
j=1

(
z2
j + z−2

j + |R2j−1|2 + |R2j |2
)

� E. Note that,

as it constrains only the expectation value of Ĥ0, such an assumption is not equivalent to a
truncation of the Hilbert space, and does not reduce our setting to a finite-dimensional one:
the support of the states we are considering is still infinite dimensional (as is the case for all
Gaussian states). However, this proviso does allow one to tame the non-compact nature of the
symplectic group and to define well-behaved measures on it, as we are about to see.

In order to further constrain the choice of measures on such variables we shall invoke
now a fundamental statistical argument, which we shall refer to as general canonical principle,
stating that

Given a sufficiently small subsystem of the universe, almost every pure state of the
universe is such that the subsystem is approximately in the ‘canonical state’ �c.

Such a principle, already well known in the context of quantum thermodynamics [12, 13],
has also been recently reintroduced as the basis of a ‘kinematical’ formulation of statistical
mechanics [14]. The ‘canonical state’ �c is, in our case, the local reduction of the global
state with maximal entropy under the constraint of a maximal expectation value for the energy
operator Ĥ0 given by E. This is exactly the definition of a ‘thermal state’ of the Hamiltonian
Ĥ0, which is the reduction of a state that maximizes the entropy for a given energy E. The
local canonical state �c of m modes is thus given by

�c = e− ∑m
j=1

(
x̂2

j +p̂2
j

)/
T

tr
[
e− ∑m

j=1(x̂
2
j +p̂2

j )/T
] .

As implied by the foregoing equation, the state �c is Gaussian, because it can be expressed
as the exponential of a quadratic polynomial in x̂j ’s and pj ’s. In particular, it can be
shown that � has vanishing first moments and CM σc = (1 + T/2)11 [29]. Here the
‘temperature’ T is defined by passage to the ‘thermodynamical limit’, that is for n → ∞
and E → ∞, (E − 2n)/n → T (assuming kB = 1 for the Boltzmann constant). For
ease of notation, in the following, the symbol � will imply that the equality holds in
the thermodynamical limit, e.g.: (E − 2n)/n � T . Note that we have required here the
introduction of a maximum energy E or, alternatively, of a temperature T. In point of fact,
such requirements are necessary to handle the non-compact part of the symplectic group.
Note also that, in principle, two options are open in this respect, as one can introduce either an



Canonical and micro-canonical typical entanglement of continuous variable systems 9559

upper bound to the energy or a temperature: essentially, these two distinct options characterize
the two distinct approaches (micro-canonical and canonical) which we will detail in the next
section.

Because the canonical state �c is Gaussian with vanishing first moments, the general
canonical principle can be fully incorporated into our restricted (Gaussian) setting. As we
have shown in [20], the compliance with the general canonical principle enforces a rather
stringent restriction on the distribution of the non-compact variables. In particular, the general
canonical principle is always satisfied if, in the thermodynamical limit, such variables are
independent and identically distributed (i.i.d.)3. To keep our exposition lighter and more
readable, we will not repeat here the technical derivation of this implication. Actually, it will
be entirely subsumed, a posteriori, by the derivation of the ‘concentration of measure’ in
section 4.

Before moving on with the definition of specific measures, let us comment on the first
moments {R}. The general canonical principle imposes that, in the thermodynamical limit,
their density of probability p′(R) tend to a δ-distribution centred in 0 (in fact, the canonical
state has vanishing first moments). A suitable example is p′(R) = (nλ/π)n exp(−nλ‖R‖2)

for some constant λ (note that ‖R‖2 is the first moments’ contribution to the energy). Let us
remark that this class of distributions encompasses those usually adopted for coherent states,
in the computation of classical teleportation thresholds [30, 31]. From now on, we will just
set the first moments to zero: they can be coherently incorporated into our general picture
following the recipe given above.

Let us now turn to second moments and sum up our line of thought so far: inspired by
mathematical considerations and guided by physical arguments, we have defined a distribution
for the ‘compact’ degrees of freedom ϑ (essentially, their Haar measure) and specified a
prescription for the non-compact parameters zj ’s, derived by upper bounding the energy of
the states and by adopting a fundamental thermodynamical proviso, in the form of the ‘general
canonical principle’. More precisely, the measures satisfying such a principle will be apt
to describe ensembles of systems at the thermodynamical equilibrium, where the principle
always holds. In this sense, our treatment is ‘thermodynamical’ in essence, as it ultimately
addresses ensembles resulting from randomizing processes which reproduce conditions of
thermodynamical equilibrium.

Several choices are then possible, within the constraint of asymptotically i.i.d. variables
dictated by the principle, to deal with the variables zj ’s: generally, the choice of a specific
measure will depend on the specific conditions of the system under exam. However, let us
point out that this analysis allowed us to introduce a very general framework under which
proper, normalized measures on the set of Gaussian states can be defined. To illustrate such a
programme, we will now detail two possible choices, which will allow us to study the typical
entanglement of Gaussian states at, respectively, given maximal energy and given temperature.

3.1. Micro-canonical measure

As a first approach, we will introduce a micro-canonical measure on the class of n-mode pure
Gaussian states with an energy upper bounded by E. Note that such a restriction is essentially
equivalent to fixing the total energy of (n+1)-mode states to E+2 (in fact, in the latter instance,
the energy of the additional mode is not independent and merely ‘makes up’ to reach the fixed

3 Even though the agreement between the two pairs of equations could allow for a more general choice, i.i.d.
variables are by far the most convenient assumption for the sake of clarity of both mathematical description and
physical interpretation (see [20]).
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total amount). Notably, the two approaches are indistinguishable in the thermodynamical
limit.

Note that the parameters {zj }, whose distribution is left to define, determine the energy
Ej pertaining to each decoupled mode j of the Euler decomposition, according to [see
a equation (13)]

Ej = z2
j +

1

z2
j

. (14)

Here, we will assume a Lebesgue (‘flat’) measure for the local energies Ej ’s (uniquely
determining the squeezings zj ’s, as zj � 1), inside the region �E = {E : |E| � E} bounded
by the linear hypersurface of total energy E (here, E = (E1, . . . , En) denotes the vector
of energies, with all positive entries, while |E| = ∑n

j=1 Ej ). More explicitly, denoting by
dpmc(E) the probability of the occurrence of the energies E, one has

dpmc(E) = NdnE ≡ NdE1 · · · dEn if E ∈ �E,

dpmc(E) = 0 otherwise,
(15)

where N is a normalization constant equal to the inverse of the volume of �E . Note that such
a flat distribution is the one maximizing the entropy in the knowledge of the local energies of
the decoupled modes. In this specific sense such variables have been privileged, on the basis of
both mathematical (the Euler decomposition) and physical (analogy with the micro-canonical
ensemble) grounds. Let us also mention that, as will become apparent in the next section,
employing the variables {Ej } leads to a remarkable simplification of the expression of the
averages over the Haar measure of the compact subgroup. While purely formal, this aspect
yields some significant insight into the privileged role of such variables in characterizing the
statistical properties of physical quantities.

The micro-canonical average Qmc(E) over pure Gaussian states at maximal energy E of
the quantity Q(E, ϑ) determined by the second moments alone will thus be defined as

Qmc(E) = N
∫

dµH (ϑ)

∫
�E

dEQ(E, ϑ), (16)

where the integration over the Haar measure is understood to be carried out over the whole
compact domain of the variables ϑ . More explicitly, the integral over the energies E can be
recast as ∫

�E

dE = N
∫ E−2(n−1)

2
dE1 · · ·

∫ E−∑n−1
j=1 Ej

2
dEn (17)

(each energy is lower bounded by the vacuum energy, equal to 2 in the convention adopted
here), determining the normalization as N = n!/(E − 2n)n and leading to a marginal density
of probability Pn(Ej , E) for each of the energies Ej given by

Pn(Ej , E) = n

E − 2n

(
1 − Ej − 2

E − 2n

)n−1

. (18)

Clearly, the energies Ej are not i.i.d. for finite n. However, as is apparent from
equations (17) and (18), in the thermodynamical limit the upper integration extremum diverges

for each Ej while, for the marginal probability distribution, one has Pn(Ej , E) � e− Ej −2

T

/
T .

In the thermodynamical limit, the decoupled energies are distributed according to independent
Boltzmann distributions, with the parameter T playing the role of a temperature, in
compliance with the equipartition theorem and equivalence of statistical ensembles of classical
thermodynamics. This argument shows that the micro-canonical measure fulfils the general
canonical principle. Also, it naturally brings us to introduce a ‘canonical’ measure on the set
of pure Gaussian states.
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3.2. Canonical measure

In the ‘canonical’ approach, we will assume for the energies E a probability distribution
dpc(E) reading

dpc(E) = e−(|E|−2n)/T

T n
dE =

n∏
j=1

(
e−(Ej −2)/T

T
dEj

)
, (19)

introducing a ‘temperature’ T. This distribution maximizes the entropy on the knowledge of
the continuous variables Ej ’s for given average total energy Eav, such that nT = Eav (the
latter relation is easily derived by applying Lagrange multipliers).

The ‘canonical’ average Qc(T ) over pure Gaussian states at temperature T of the quantity
Q(E, ϑ) determined by the second moments alone will thus be defined as

Qc(T ) =
∫

dµH (ϑ)

∫
e−(|E|−2n)/T

T n
dEQ(E, ϑ), (20)

where the integration over the energies is understood to be carried out over the whole allowed
domain (Ej � 2 ∀ j).

As already elucidated, the micro-canonical and canonical approaches coincide in the
thermodynamical limit, as one should expect in analogy with the indistinguishability of the
classical statistical ensembles in the thermodynamical limit.

Let us point out that the canonical distribution of states we have defined in this subsection
results as the stationary distribution of states under the application of a randomizing process
‘á la Metropolis’, where any initial pure Gaussian state undergoes compact single-mode
symplectic operations (‘phase-plates’, in the quantum optical terminology) with random
optical phase, fixed two-mode compact operations (‘beam-splitters’) between two random
modes, and random single-mode squeezings, such that the squeezing operation is always
accepted if it decreases the energy and probabilistically accepted (with Boltzmann weight) if
it increases the energy. This provides an interpretation of the proposed measure in terms of
random circuits.

4. Concentration of measure

In the present section, we will study the statistical properties of the entanglement of pure
Gaussian states in the thermodynamical limit under the measures introduced in the previous
section. More specifically, we shall focus on the behaviour of the entanglement of a subsystem
of m modes (as quantified by the von Neumann entropy of the reduction describing such a
subsystem), keeping m fixed and letting the total number of modes n → ∞. As we have seen,
the two measures coincide in this limit (when, in the micro-canonical treatment, the energy—
notably the other extensive quantity in play—diverges as well). It will thus suffice to consider
the canonical measure, and the micro-canonical averages will be retrieved upon identifying
T ≡ (E − 2n)/n. In this section, the shorthand notation x will stand for the average of the
quantity x with respect to the canonical state-space measure. Under the previous assumptions,
we will determine the average asymptotic entanglement and prove that the variance of the
entanglement tends to zero in the thermodynamical limit. The latter property, which had been
previewed in [20], will be referred to as ‘concentration of measure’.
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Let us first recall that the von Neumann entropy S of the m-mode reduction is determined
by the local symplectic eigenvalues {νj , for 1 � j � m} of the reduced m-mode CM γ

according to

S =
m∑

j=1

h(νj ), (21)

where the entropic function h(x) is defined by equation (10), with the additional proviso
h(1) ≡ 0 (which renders the function continuous). Recall also that the uncertainty principle
reads νj � 1 in terms of the symplectic eigenvalues.

In turn, the symplectic eigenvalues are continuously determined by m symplectic invariants{

m

d

}
, given by the even-order coefficients of the characteristic polynomial of the matrix �σ

[27]. Let us denote by g the continuous function connecting the invariants to the von Neumann
entropy:

S = g
(

m

1 , . . . ,
m
m

)
. (22)

Note also that any symplectic invariant 
m
d is a homogeneous polynomial of order 2d in the

entries of γ.
In order to prove the concentration of measure for the entanglement, we will show that

the distribution induced by the canonical measure on the space of the symplectic invariants
tends, in the thermodynamical limit, to a δ-function centred on their averages (which will also
be determined). Through equation (22), this will allow us to infer concentration of measure
for the von Neumann entropy (and to determine its asymptotic average as well). Note that
this will also imply concentration of measure for any other entropic measure as, for Gaussian
states, all such quantities are univocally determined by the symplectic invariants [27, 32].

Let us consider the CM σ of the whole system. Considering the expression (13) for a pure
covariance matrix and parametrizing the transformation O ∈ K(n) in terms of the matrices X
and Y such that (X + iY ) ≡ U ∈ U(n), according to the isomorphism of equation (5), one has
for the entries of σ:

σjk =
∑

l

(
XjlXklz

2
l + YjlYklz

−2
l

)
for 1 � j, k � n, (23)

σjk =
∑

l

(
YjlYklz

2
l + XjlXklz

−2
l

)
for n + 1 � j, k � 2n, (24)

σjk =
∑

l

(−XjlYklz
2
l + YjlXklz

−2
l

)
for 1 � j, (k − n) � n. (25)

As previously remarked, each of the symplectic invariants is a homogeneous polynomial in
such entries. Let us now consider, for fixed squeezings zj ’s, the averages of such polynomials
with respect to the matrices X and Y, distributed according to the Haar measure over U(n).

To work out averages over the Haar measure we shall make use of some basic properties
of the integration over the unitary group, derived from simple symmetry arguments. The
reader is deferred to [33] for a general discussion of such strategies. Let us also mention that
an alternative way for computing Haar integrals with applications to linear optical systems
and average entanglement has been discussed in [34]. In particular, since permutation of
the indices is clearly a unitary operation, and since the Haar measure is both left- and right-
invariant with respect to any unitary operation, the integration over the group only depends
on the number and multiplicity of the different left and right indices present, but not on their
specific values. Likewise, the measure is invariant under local phase changes (i.e. operations
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represented by diagonal matrices with one eigenvalue equal to eiφ and all the other eigenvalues
equal to 1), which implies that all the Xjk’s can be swapped with Yjk’s without affecting the
values of the integrals. Another consequence of the invariance under local phase changes will
be exploited shortly.

Let us consider the average 
m
d of the invariant 
m

d in the limit n → ∞. This invariant is
a polynomial of order 2d of elements given by equations (23)–(25), so that each term of the
polynomial is a product of sums, of the form

2d∏
s=1

σjsks
=

2d∏
s=1

(
n∑

l=1

Wjsks l

)
, (26)

where Wjkl are polynomials of order two in X and Y depending on the zl’s and determined
by equations (23)–(25). Suppose we expand the product occurring on the LHS of
equation (26), and sort the contribution of the resulting addenda according to the multiplicity
of the different indexes l’s, for 1 � l � n. As already remarked, the integral over the
Haar measure of the monomials in the matrix elements Xjl and Yjl , depends only on such
multiplicities. Elementary combinatorial arguments show that the contributions of leading
order in n are those for which all the indexes lk’s are different from each other, which
encompasses n!/(n − 2d)! terms of the resulting sum: all the other terms can be neglected in
the thermodynamical limit.

Indeed, only one of the leading terms is non-vanishing. Whenever a term of the sum of
equation (25) enters in a monomial where all the lk’s are different, the resulting average is of
the form Xj1Yk1q(X, Y ), where the index 1 has been fixed with no loss of generality (due to
permutational invariance), while the q(X, Y ) is any function of the entries of X and Y where
Xj1 and Yk1 do not appear. In terms of the complex unitary matrix U = X + iY , one then has

4iXj1Yk1q(X, Y ) = (Uj1 + U ∗
j1)(Uk1 − U ∗

k1)q(X, Y ) = 0,

because the average has to be invariant under arbitrary left and right phase changes on the
indexes j, k and 1, but all the ‘phase-invariant’ terms |U1j |2 get cancelled out [this holds also
for j = k, as in that case the factor depending on Uj1 reduces to

(
U 2

j1 − U ∗2
j1

)
]. Moreover, if

all the lk’s are different, terms coming from the sums of equation (23) are identical to those
coming from the sums of equation (24), as X’s and Y’s indexes can be swapped. Summing up,
the leading term as n → ∞ of the average 
m

d , reads


m
d � c(d,m, n)

∑
Sn

2d

∏
l∈Sn

2d

(
z2
l +

1

z2
l

)
= c(d,m, n)

∑
Sn

2d

∏
l∈Sn

2d

El, (27)

where the sum runs over all the possible 2d-subsets Sn
2d of the first m natural integers (i.e.

over all the possible n!/(n − 2d)! � n2d combinations of 2d integers smaller or equal than n,
with no repetitions, equal to all the possible combinations of different indexes), c(d,m, n) is a
factor depending on d,m and n which we shall determine shortly, and the symbol � specifies
that the equality holds in the thermodynamical limit. Note that, being interested in finite
subsystems in the thermodynamical limit, we can always assume 2d < n. The convenience
of the parametrization of the states through the energies {Ek} becomes fully apparent in the
previous expression. The coefficient c(d,m, n) is easily determined by considering that,
setting Ek = 2 ∀ k, one has σ = 11 regardless of the applied orthogonal transformation, for
which the values of the local invariants 
m

d are fixed and trivially equal to their averages. This
yields


m
d �

(
m

d

)∑
Sn

2d

∏
l∈Sn

2d
El

(2n)2d
. (28)
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Note that the factor n−2d in the normalization is due to the integration over the Haar measure.
In fact, such a dependence is common to the average of any monomial of order 2d in the matrix
elements (when non-null) [33]. Also, let us emphasize that the previous line of thought applies
to any polynomial in the entries of σ. The only specific information about the invariants 
m

d

entered in imposing the normalization condition, so that all the structure of the invariants could
be ‘extracted’ from a trivial situation (one has 
m

d = (
m

d

)
for the vacuum [28]).

The same arguments apply to the average
(

m

d

)2
(as a squared invariant is just a polynomial

of order 4d in the entries of σ), leading to

(

m

d

)2 �
(

m

d

)2
∑

Sm
4d

∏
l∈Sm

4d
El

(2n)4d
. (29)

To prove the concentration of measure for the invariants, we have to average over the
remaining variables {Ej }. As we have seen, both the canonical and the micro-canonical
distributions are i.i.d. in the thermodynamical limit. For the sake of clarity, let us impose the
two conditions of invariance under permutations and statistical independence one at a time.
The invariance under permutations of the variables {Ek} allows one to write equations (28)
and (29) as


m
d �

(
m

d

)
n!

∏2d
k=1 Ek

(n − 2d)!(2n)2d
�

(
m

d

)∏2d
k=1 Ek

22d
+ O

(
1

n

)
,

(
m
d )2 �

(
m

d

)2 ∏4d
k=1 Ek

24d
+ O

(
1

n

)
,

leading to

lim
n→∞

(

m

d

2 − (

m

d

)2) =
(
m

d

)2

16d





 2d∏

k=1

Ek




2

−
4d∏

k=1

Ek


 . (30)

Note that the quenching of the residual terms in this development is due to the integration
over the Haar measure of the compact symplectic group, which always results in terms of the
order n−2j for polynomials of order 2j in X and Y. Finally, the statistical independence of the

energies Ej ’s requires
∏k

j=1 Ej = E
k∀ k, such that the previous equation becomes

lim
n→∞

(

m

d

2 − (

m

d

)2) = 0. (31)

Therefore, the variance of any local symplectic invariant 
m
d vanishes in the thermodynamical

limit. The previous argument applies to any polynomial of finite order in the entries of σ. In
particular, in the case 2d = 1, this vanishing of the variance directly applies to the entries of
σ, thus also implying, a posteriori, the compliance (already shown in [20] in a more specific
background) of the presented measures with the general canonical principle.

To complete our proof and extend the concentration of measure to the local von Neumann
entropy, let us consider the measure �n

(

m

1 , . . . ,
m
m

)
induced, in the m-dimensional real

space of the local symplectic invariants
{

m

d

}
, by the proposed canonical measure on n-mode

pure Gaussian states. Because of equation (31), such a measure completely concentrates in
the average values 
m

d . Here, we will express this fact by claiming that �n tends to a Dirac
delta:

lim
n→∞ �n

(

m

1 , . . . ,
m
m

) = δ
(

m

1 − 
m
1 , . . . ,
m

m − 
m
1

)
.
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[see appendix B for a rigorous formulation, showing the emergence of the following limits
from equation (31)]. For the von Neumann entropy of the m-mode subsystem Sm, one finds

lim
n→∞ Sm = lim

n→∞

∫
�n

(

m

1 , . . . ,
m
m

)
g
(

m

1 , . . . ,
m
m

)
dm
m

d = g
(

m

1 , . . . ,
m
m

)
, (32)

lim
n→∞ S2

m − Sm
2 = 0. (33)

The asymptotic average Sm can be determined as well. First, let us determine the canonical
averages 
m

d of the invariants according to equations (28) and (19), finding

lim
n→∞ 
m

d =
(

m

d

)(
1 +

T

2

)2d

. (34)

Next, let us recall the expression of the symplectic invariants in terms of the symplectic
eigenvalues {νj } [27]:


m
d =

∑
Sm

d

∏
k∈Sm

d

ν2
k . (35)

Straightforward substitution in equation (35) shows that the values νk = (1 + T/2) ,∀ 1 �
k � m, account for the asymptotic values of the invariants given by equation (34). Thus, for
the symplectic eigenvalues {νj }, one has

lim
n→∞ νk = 1 +

T

2
, ∀ 1 � k � m. (36)

In the thermodynamical limit, both the introduced distributions, canonical and micro-
canonical, comply with a form of equipartition theorem: an average ‘energy’ equal to T/2 is
allotted to each decoupled quadratic degree of freedom. Finally, one has

lim
n→∞ S = mh

(
1 +

T

2

)
. (37)

5. Study of the typical entanglement of pure Gaussian states

In the present section, we present a detailed study of the typical bipartite entanglement for
Gaussian states with a finite number n of total modes. More specifically, we will study the
statistical properties of the entropies of a reduced subsystem of m modes, when the global
states are distributed according to the micro-canonical and canonical measures.

As we have remarked in equation (8), the quantity det σ is a proper quantifier of the
mixedness of Gaussian states, and thus of their entanglement as well, when computed for the
reduced subsystem of a pure state. For such an entropic quantity, we were able to derive
analytical expressions for the canonical and micro-canonical average and standard deviation,
which will be presented in subsection 5.1. In subsection 5.2, we describe a strategy—based on
a simple linear minimization—to derive, from such analytical results, exact information about
the micro-canonical statistical properties of the actual entropy of entanglement (defined as the
von Neumann entropy of the subsystem). In subsection 5.3 we complement this analysis with
numerical results, also covering m-mode subsystems.
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5.1. Purity of single-mode subsystems

For a single-mode subsystem (corresponding to m = 1 in the previous section’s notation),
we have worked out analytically the average and variance of the inverse squared purity
µ−2 = 1/ tr[�2]2, which coincides, for Gaussian states, with the determinant of the reduced
covariance matrix γ (maintaining the notation of the previous section). Let us mention that,
in this particular instance, such a measure is a perfectly legitimate entanglement quantifier, as
it induces, on the set of single-mode states, the same hierarchy as the von Neumann entropy
(in fact, both quantities are determined by the single symplectic eigenvalue, see section 2)
[36].

Making use of the methods described in [33], we determined the first and second statistical
moments over the Haar measure (respectively denoted by µ−2

H and µ−4
H ) of the determinant

det γ = µ−2, to find

µ−2
H =

∑
j �=k

EjEk

4(n + 1)n
+

2

n + 1
, (38)

µ−4
H = 1

16

(n − 1)!

(n + 3)!


 ∑

j �=k �=l �=m

EjEkElEm + 8
∑

j �=k �=l

E2
j EkEl + 12

∑
j �=k

E2
j E

2
k

+ (96 + 16(n − 2))
∑
j �=k

EjEk − 32(n − 1)
∑

j

E2
j + 128n(n − 1) + 384n


 ,

(39)

where the averages over the variables {Ej } are still to be worked out, according to the chosen
distribution.

The canonical and micro-canonical averages are then straightforward to compute. In the
canonical instance, the average and second moment µ−2

c and µ−4
c read

µ−2
c = 1

4

n − 1

n + 1
(T 2 + 4T ) + 1, (40)

µ−4
c = 1

16

n!(n − 1)

(n + 3)!
[(n2 + 11n + 22)T 4 + 8(n2 + 8n + 6)T 3 + 8(3n2 + 15n + 10)T 2

+ 32(n + 3)(n + 2)T ] + 1. (41)

Whereas, in the micro-canonical case, defining Ẽ ≡ (E − 2n), one gets

µ−2
mc = (n − 1)

4(n + 2)(n + 1)2
(Ẽ2 + 4(n + 2)Ẽ) + 1, (42)

µ−4
mc = (n!)2(n − 1)

16(n + 4)!(n + 3)!
((n2 + 11n + 22)Ẽ4 + 8(n + 6)(n + 4)(n + 1)Ẽ3

+ 8(n + 4)(n + 3)(3n2 + 15n + 10)Ẽ2 + 32(n + 4)(n + 3)2(n + 2)2Ẽ) + 1. (43)

Note that the maximal µ−2
M for given energy E = Ẽ + 2n is (see appendix C)

µ−2
M = (Ẽ + 4)2

16
. (44)
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Whilst restricted to a particular quantifier and to a single mode, these analytical results
display the most relevant statistical features of the entanglement of pure Gaussian states. The
micro-canonical mean µ−2

mc is monotonically increasing with E for fixed n and, for n > 2,
monotonically decreasing with n for given E (a ‘finite size’ effect shows up for Ẽ � 10,
where µ−2

mc increases in going from 2 to 3 modes). This can be promptly explained as more
available energy generally allows for higher entanglement, while the presence of more modes
‘drains’ energy away to establish correlations which do not involve the particular chosen
mode. On the other hand, the canonical average entanglement is monotonically increasing
with both temperature and number of modes. This behaviour is encountered also for the
micro-canonical entanglement with given maximal total energy per mode, which is, even for
small n, closely akin to the canonical ensemble (upon replacing Ẽ/n with T). The increase of
the average canonical entanglement with increasing number of modes but fixed temperature
is a non trivial, purely ‘geometric’ effect, due to the average over the Haar measure dµH (ϑ)

of the compact variables ϑ . An analogous increase is in fact observed assuming a given, fixed
value for the variables zj ’s and averaging only over the compact variables ϑ : as the number of
total modes increases, a given mode has more possibilities of getting entangled, even keeping
a fixed mean energy per mode.

As for the standard deviations, which are straightforward to derive from the expressions
above, they are generally increasing with total energy and temperature for fixed total number of
modes (as more energy allows for a broader range of entanglement). Significantly, these partial
analytical results clearly show the arising of the concentration of measure around a thermal
average. Both for the canonical case and for the micro-canonical one with Ẽ = nT the standard
deviation decreases with increasing number of modes n, falling to zero asymptotically (after
transient ‘finite size’ effects, for very small n). Moreover, in the micro-canonical instance,
the thermal average of concentration is generally very distant, even for relatively small n,
from the allowed maximum of equation (44) (which clearly diverges in the thermodynamical
limit): e.g., for Ẽ = 10n one has that the average µ−2

mc is, respectively 16.5 and 257.1 standard
deviations away from the maximal value µ−2

M for n = 5 and n = 20. Such a distance increases
monotonically with the total number of modes. This peaked concentration for finite n will be
exploited in the next subsection to obtain strict bounds on the average von Neumann entropy
of entanglement of single-mode subsystems.

5.2. Estimating the micro-canonical mean entropy of entanglement

In the previous section, we have focused on the inverse square purity µ−2, because it can be
readily described in terms of the covariance matrix’s entries, thus allowing one to determine
analytical expressions for the entanglement’s statistics. Let us stress once more that, for
pure states, such a quantity is a legitimate entanglement measure, as it is a monotone strictly
related to the so-called linear entropy, given by 1 − µ. Moreover, for single-mode Gaussian
states, the linear entropy is, as we have already remarked, monotonically determined by the
von Neumann entropy alone. However, the proper ‘entropy of entanglement’ (given by the
von Neumann entropy of the reduced density matrix) is endowed with a clear operational
meaning for pure states (as it corresponds to the rate of singlets distillable from the state in the
asymptotic limit of infinite copies [35]). It is thus highly desirable to obtain qualitative and
quantitative information about the statistical properties of such a quantity under our measures.
Clearly, the findings of section 4 already provide us with such results in the thermodynamical
limit, where the von Neumann entropy concentrates, with vanishing variance, around the value
set out in equation (37).
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Here, we shall address the entropy of entanglement of a single-mode subsystem in a
system with a finite total number of modes. Exploiting the fact that the von Neumann entropy
S is continuously determined by µ−2 as [36]

S(µ) = h(µ−1) (45)

(under the additional prescription S(1) ≡ 0), we will show how upper and lower bounds on
the micro-canonical average Smc can be derived. The reason why we focus on the micro-
canonical measure is that, imposing a bound on the energy, it involves a maximal value for
the entanglement (as discussed in appendix C), which is another key ingredient we are going
to use. Extending the method we are presenting to the canonical measure is possible, at the
price of introducing an approximation to neglect the ‘tail’ of the canonical distribution in
the space of the entanglement (certainly feasible with reasonable resources for small enough
temperatures). As we will see, such bounds, which we know to become increasingly close
with increasing n because of concentration, can be quite tight even for relatively small n, thus
providing precise information about the average entropy of entanglement.

For the sake of readability, we will from now on set a := µ−2. For a given number n
of modes and total energy E in the system, the maximum value amax for the inverse squared
purity of any fixed mode is given by equation (44), while the minimum value is always (for
n > 2) given by amin = 1, corresponding to the case where the mode is decoupled from the
remainder of the system. Our measure on Gaussian states will induce a probability distribution
ν on the interval [amin, amax]. While we do not know ν directly, we are aware of two of its
properties, namely the averages amc and a2

mc with respect to it, which we computed in the
previous subsection. Our approach is going to be as follows: to obtain an upper bound for
Smc we maximize Smc over all probability distributions ν ′ which produce the right averages
for a and a2. There is a technical obstacle to the pursuit of this programme: the set of all
probability distributions on the interval is infinite dimensional. To circumvent this problem,
we will partition [amin, amax] into M equally sized sub-intervals (M ∈ N being an arbitrary
parameter) and consider ‘discretized’ probability distributions, which are constant over these
subintervals. This is going to be done in such a manner that the resulting bounds are valid for
any finite M, and not only in the limit of M → ∞. Also, it will turn out that all optimizations
can be cast into the form of linear programmes. This excludes the occurrence of local minima
and implies that the obtained bounds will hold rigorously.

More explicitly, fix an M ∈ N. The kth sub-interval will be [l(k), l(k + 1)], where
l(k) ≡ amin + k amax−amin

M
is its leftmost point. Let νk := ν([l(k), l(k + 1)] be the measure of the

kth sub-interval. Clearly, one has

amc =
∫ amax

amin

a dν(a) �
M−1∑
k=0

l(k + 1)νk, amc �
M−1∑
k=0

l(k)νk, (46)

a2
mc �

M−1∑
k=0

l(k + 1)2νk, a2
mc �

M−1∑
k=0

l(k)2νk. (47)

Furthermore, because S(a) is monotonously increasing in a, we have

Smc =
∫ amax

amin

S(a) dν(a) �
M−1∑
k=0

S(l(k + 1))νk. (48)
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Figure 1. Upper and lower bounds to the micro-canonical average von Neumann entropy of
entanglement of one mode as a function of the number of total modes n. The maximal energy
was assumed to be 4n (in units of h̄ω/4). To compute the bounds, the method described in
subsection 5.2 has been employed. The parameter M was chosen to be 10 000.

Now let P ⊂ R
M be the set of probability distributions which are constant on the M sub-

intervals and compatible with equations (46) and (47). Certainly, the discrete distribution
given by the νk is an element of P and we can thus deduce from equation (48) that

Smc � sup
ν ′∈P

M−1∑
k=0

S(l(k + 1))ν ′
k. (49)

Hence, the following linear programme with variables ν ′ ∈ R
M yields an upper bound for Smc:

maximize
∑

k

S(l(k + 1))ν ′
k

subject to amc �
∑

k

l(k + 1)ν ′
k, amc �

∑
k

l(k)ν ′
k,

a2
mc �

∑
k

l(k + 1)2ν ′
k, a2

mc �
∑

k

l(k)2ν ′
k,

∑
k

ν ′
k = 1.

A lower bound is found by a completely analogous minimization programme.
Figure 1 depicts the results of the programme laid out above for a specific choice of energy

per mode. Quite remarkably, already for a small number of modes, one can give a fairly
precise value for the average micro-canonical entropy of entanglement, thus complementing
the asymptotic statement of section 4. Let us also mention that the restriction imposed by the
knowledge of the second moments is crucial in rendering the bounds so tight (as opposed to
the use of the averages alone).

5.3. Numerical results on the entropy of entanglement

Unfortunately, the analytical and exact methods illustrated above cannot be easily extended
to more complicated situations. However, our measures are well suited to be numerically
investigated by direct sampling (the Haar measure-distributed symplectic orthogonal can be
reproduced by generating unitary matrices from the Gaussian unitary ensemble [37] and
then by translating them according to equation (5)).4 This allows for the investigation of the
statistical properties of the actual entropy of entanglement for varying values of m, n and of
the parameters of the measures E or T, according to the setting in question.

4 The MATLAB code we made use of is available at www.imperial.ac.uk/quantuminformation.
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Figure 2. Histograms of microcanonical entanglement distributions. m = 1, and 5000 samples
were taken for each distribution. The concentration of measure with increasing n is apparent.
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Figure 3. Numerical evidence that the ratio variance/average, for a microcanonical measure on
n-mode states with maximal energy E, is proportional to 1/n and, surprisingly, that the
proportionality factor is independent of E/n. A single-mode subsystem was considered (m = 1);
1500 states were sampled for each data point.

In figure 2 a sequence of numerically generated microcanonical probability distributions
for the entanglement of a single mode are plotted, unambiguously showing the concentration
of measure for the von Neumann entropy at small n. Note that, for low enough energies
in the microcanonical case, even for small n—well before the onset of thermodynamical
concentration of measure around the finite thermal average—the entanglement of pure
Gaussian states distributes around values generally distant from the finite allowed maximum:
e.g., for m = 1 and E = 10n, the difference between the maximum and the average S is,
respectively, 4.0 and 13.6 standard deviations for n = 5 and n = 20.

Furthermore, for the micro-canonical case, our investigation through sampling indicates
that the ratio between variance and average is inversely proportional to n for finite n and, rather
surprisingly, that the proportionality factor is independent of E/n (see figure 3).

When more than one mode is addressed (i.e. when m > 1), numerics show that the
average canonical entanglement is roughly proportional to the number of local modes m. The
same linear approximation carries over to the micro-canonical case for E � n and m � n,
upon substituting E/n for T. Clearly, such an approximate proportionality, rigorously true
in the thermodynamical limit [see equation (37)], is better satisfied for increasing number
of total modes n, but provides good estimates (up to some percent) already for n ≈ 30
and small enough m, as is shown in figure 4(a), where a clear subadditive behaviour for
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Figure 4. Microcanonical average entropy of entanglement (a) and standard deviation of the
entropy of entanglement’s distribution (b) for E = 10n, as a function of the number of modes m of
the reduced subsystem. On the left (a), the upper curve (red online) refers to n = 30, the middle
curve (blue online) to n = 20 and the lower curve (green online) to n = 10. On the right (b),
the upper curve (green online) refers to n = 10, the middle curve (blue online) to n = 20 and the
lower curve (red online) to n = 30. Only the range 1 � m � 5 was considered for n = 10. Data
were obtained from samples of 5000 states.

m � n is also apparent. Also, let us point out that the concentration of measure for the
entanglement distribution clearly shows up at finite n for m > 1 as well. For instance, for a
microcanonical distribution with m = 5, n = 20 and E = 200, one finds that the average is
11.4 standard deviations away from the allowed maximum. Also, figure 4(b) shows how the
standard deviation increases approximately proportionally to m and decreases for increasing
n for m �= 1 as well.

5.4. Concentration of measure for infinite subsystems

So far, we have considered the concentration of measure occurring for a finite subsystem with
a fixed number of modes m. Let us now briefly turn to the case of a fixed ‘ratio’ of subsystems,
where m/n > 0 in the thermodynamical limit. Clearly, in such a case, the subsystem as well
comprises infinitely many modes.

The analytical reasoning of section 4 can be readily adapted to this case and shows, not
surprisingly, that the average S of the von Neumann entropy diverges in the thermodynamical

limit. In this case though, analogous arguments imply that the variance S2 − S
2

of the von
Neumann entropy diverges as well. Still, numerics strongly suggest the occurrence of a weaker
form of concentration, namely

(S2 − S
2
)/S

2 � 0. (50)

This behaviour, unambiguously supported by the numerical analysis in both the micro-
canonical and canonical instances, extends to the general case of large m the evidence depicted
in figure 3 (according to which the ratio between variance and average is inversely proportional
to n).

6. Conclusions and outlook

The approach we have introduced here tames the divergence due to the infinite dimension of
the Hilbert spaces of continuous variable systems and allows one to introduce a well defined
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notion of ‘typical’ continuous variable entanglement. Our exhaustive analytical and numerical
study shows that such a typical entanglement concentrates sharply around a thermal average,
even for a relatively small number of modes. In the micro-canonical case, where the upper
bound to the energy implies the existence of an absolute upper bound for the entanglement,
the average entanglement turns out to be different and well separated from the maximal value,
by many standard deviations, even for very small number of modes. Under such ‘heavily
thermodynamical’ prescriptions—as are those we have adopted to construct the canonical
and micro-canonical measures—equipartition prevents the entanglement from reaching the
allowed maximum, evenly spreading the correlations between all the modes.

Our measures, being compliant with the general canonical principle, should be suitable to
the description of dynamical situations [12, 21], also involving randomized interactions [7].
A systematic study of such processes—notably restricting to two-mode interactions, in the
spirit of [7]—where the two measures defined here would arise as stationary distributions, is
the next direction to pursue in the present line of research.

This line of enquiry may also contribute to our understanding of why objects typically
appear classical despite being governed, as is normally assumed, by quantum mechanics. In
particular, this and other related works, such as [6, 14, 12], imply that, always in a particular
sense, most global pure quantum states have the property that a local state of a comparatively
small party, obtained by tracing over the larger party, will be highly mixed and accordingly
have little or no quantum correlations. This is at least one necessary ingredient for the system to
appear classical. The work here indicates that these arguments can be applied in the continuous
variable setting too. It would be interesting to combine, compare and further develop existing
approaches in order to explain the emergence of apparent classicality in realistic models of
physical systems. As a further investigation, one could consider the extension of analogous
micro-canonical and canonical measures on general finite-dimensional states [21]. One could
then distinguish, to a greater detail, the features induced by the chosen thermodynamical
setting from the ones proper to the Gaussian continuous variable scenario.

Finally, let us mention that the presented framework may be suitably extended to more
general, mixed Gaussian states. In fact, the Williamson decomposition of a generic covariance
matrix [equation (7)], together with the Euler decomposition given by equation (11), suggest
that, to encompass mixed states as well, one has to add only another set of compact variables
ϑ ′, plus the symplectic eigenvalues of the global mixed states {νj }. The presented approach
thus also paves the way for the definition of more general measures on the whole set of
Gaussian states.
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Appendix A. A Baker–Campbell–Hausdorff formula for quadratic polynomials in the
canonical operators

For the sake of completeness and self-consistency, we present here a proof of equation (4).
To this end, we will follow a strategy customarily adopted in the derivation of Baker–
Campbell–Hausdorff–like relations (see, e.g., [29]). Let us thus define the operator
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ĜA,b(ξ) ≡ eiξ(R̂TAR̂+R̂Tb), where ξ is a real variable. Note that the CCR straightforwardly
imply

[R̂TAR̂, R̂Tb] = 4iA�b. (A.1)

We start by assuming the following ansatz, which we will prove shortly,

ĜA,b(ξ) ≡ eiξ(R̂TAR̂+R̂Tb) = eif (ξ)(R̂TAR̂)eR̂T(M(ξ)b), (A.2)

where f (ξ) is a scalar real function, whereas M(ξ) is a 2n×2n matrix depending continuously
on ξ . Differentiating both sides with respect to ξ , we find (differentiation is denoted by ’):

−i
dĜA,b

dξ
(ξ) = (R̂TAR̂ + R̂Tb)ĜA,b(ξ) (A.3)

= (f ′(ξ)R̂TAR̂ + R̂T eif (ξ)(R̂TAR̂)M ′(ξ)b e−if (ξ)(R̂TAR̂))ĜA,b

= (f ′(ξ)R̂TAR̂ + R̂T e−4f (ξ)A�M ′(ξ)b)ĜA,b, (A.4)

where we have made use of equation (A.1) in the last step. Equating (A.3) and (A.4) yield the
following systems of differential equations:

f ′(ξ) = 1, (A.5)

M ′(ξ) = e4f (ξ)A�, (A.6)

with initial conditions f (0) = 0 and M(0) = 0. This system always admits an analytical
solution, given in general by f (ξ) = ξ and M(ξ) = ∫ ξ

0 e4ξ ′A�dξ ′, whose value in ξ = 1 gives
the matrix M = M(1), thus proving the validity of equation (4). If A is invertible, M is simply
given by

M = 1
4�A−1(112n − e4A�). (A.7)

Appendix B. Asymptotic concentration of measure

In this appendix, we show how the concentration of the measure �n in the space of the
symplectic invariants follows from equation (31). In doing so, we will provide the reader with
a formal derivation of equations (32) and (33).

Let us consider the m-dimensional real space 
m of the vectors of symplectic invariants

 ≡ (


m
1 , . . . ,
m

m

)
, endowed with the usual Euclidean norm ‖ · ‖. Let Dε be a spherical

ball of radius ε centred in 
 ≡ (

m

1 , . . . ,
m
m

)
: Dε = {
 : ‖
 − 
‖ � ε}. Let Rε be the

complement of Dε: Rε = {
 : ‖
 − 
‖ > ε}. Recall that �n stands for the (normalized)
measure induced on the space 
m by the canonical measure of n-mode pure Gaussian states.
Also, d�n(
) will stand for the infinitesimal element of such a measure. Let us remark that
equation (31), holding ∀ d, implies

lim
n→∞(‖
‖2 − ‖
‖2) = lim

n→∞ ‖
 − 
‖2 = 0. (B.1)

Our first aim is deriving a rigorous formulation of ‘concentration of measure’, i.e.:

∀ ε > 0 and ∀ ξ > 0, ∃ ñ | ∀ n > ñ : �n(Rε) < ξ. (B.2)

To this aim suppose, ad absurdum, that the latter statement did not hold. Then, ∀ n, ∃ε, ξ > 0
and n0 > n such that one has �n0(Rε) > ξ . But this would imply that, ∀ n, ∃ n0 > n such that
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‖
 − 
‖2 � ξε2, which would overtly contradict equation (B.1). Because of normalization,
the following equation, complementary to the previous one, holds as well

∀ ε > 0 and ∀ ξ > 0, ∃ ñ | ∀ n > ñ : �n(Dε) > (1 − ξ). (B.3)

Together with equation (B.1), the two previous statements entail

∀ ε > 0 and ∀ ξ > 0, ∃ ñ | ∀ n > ñ :
∫

Rε

‖
‖2 d�n(
) < ξ. (B.4)

The consequences of these facts for the local von Neumann entropy can be easily derived by
exploiting the following simple properties. As apparent from equation (35), 
m

d �
(
νm

j

)2
,∀ j

and ∀ d: any symplectic invariant is larger than any symplectic eigenvalue. Moreover, for
the function h(x)—defining the von Neumann entropy according to equation (9)—one has
x2 > h(x) for x � 1 (as is the case for the symplectic eigenvalues, lower bounded by 1
because of the uncertainty principle). This results into ‖
‖2 � S. One can also show that
‖
‖2 � S2. Therefore, bounds analogous to (B.4) hold for the integrals over Rε of S and
S2 as well. Let us also note that the function g(
), relating the symplectic invariants to
the von Neumann entropy, is certainly continuous (as it relates a continuous function of the
eigenvalues of a strictly positive matrix to the coefficients of the characteristic polynomial of
the matrix). Putting everything together we find

∀ ξ > 0, ∃ ñ s.t. ∀ n > ñ : (g(
) − ξ)(1 − ξ) + ξ � S � (g(
) + ξ) + ξ, (B.5)

which is just equivalent to equation (32). In the previous inequalities the continuity of g(
)

has been invoked and the integral giving the average S has been decomposed into an integral
over Dε and an integral over Rε. An identical argument holds for the average S2, which can be
shown to converge to g(
)2, thus proving equation (33) as well and completing our treatment.

Appendix C. Maximal entanglement for given energy

We derive here an expression for the maximal value of the entanglement (44) of pure Gaussian
states for given energy (under a generic m + n mode bipartition), by adopting an explicit phase
space approach. To begin with, let us remark that any pure Gaussian state of m + n modes can
be reduced, by local (with respect to the m + n mode bipartition) symplectic operations, into
the tensor product of m two-mode squeezed states and of n − m uncorrelated vacua (here we
assume, without loss of generality, m � n) [38, 39]. Now, the local reduction of such a state
pertaining to the m-mode system is a Gaussian state with CM in Williamson form. We will
now prove that, amongst the CM’s with the same symplectic spectrum, the Williamson form
is the one for which the second moments’ contribution to the energy E = tr σ is minimal. To
this aim, let us recall that a generic CM σ with Williamson form ν (and symplectic spectrum
given by {νj , for 1 � j � m} can be written as

σ = O ′TZOTνOZO ′, (C.1)

where the Euler decomposition of a generic symplectic transformation has been applied.
Clearly, the orthogonal transformation O ′ do not affect the energy and can be neglected in what
follows. As for the other terms, let us define Z′ = diag(z1, . . . , zm), ν ′ = diag(ν1, . . . , νm)

and X and Y such that (X + iY ) ∈ U(m) [by virtue of the isomorphism of equation (5)], to
obtain

tr σ = tr
[
(Z′2 + Z′−2)(XTν ′X + Y Tν ′Y )

]
�

� 2 tr
[
XTν ′X + Y Tν ′Y

] = 2 tr ν ′ = tr ν,
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where the inequality ensues from a basic property of the trace of a product of positive matrices
(see [40] and note that, obviously, the eigenvalues of (Z′2 + Z′−2) are larger than 2) and from
the fact that the transformation parametrized by X and Y is orthogonal and preserves the trace.
The state achieving maximal entanglement for given energy E is thus a tensor product of m
two-mode squeezed states (being the state with minimal energy for given entanglement). The
von Neumann entropy S of the m-mode reduction of such a state is given by equation (9), with
the local symplectic eigenvalues {νj } subject to the constraint E = 4

∑m
j=1 νj + 2(n − m).

Because of the concavity of h(x), the optimal choice of νj ’s, maximizing the local entropy,
is simply given by νj = E−2(n−m)

4m
∀ j , in compliance with the previous constraint. Finally,

the maximal von Neumann entropy Smax(m, n,E) of an m-mode reduction of a (m + n)-mode
pure Gaussian state with m � n and total energy E is

Smax(m, n,E) = mh

(
E − 2(n − m)

4m

)
. (C.2)

Note that this expression diverges in the thermodynamical limit. The corresponding minimal
purity is given by equation (44).
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